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1. Gödel Numbering

We begin with Peano’s axioms for the arithmetic of the natural numbers (i.e. number theory):

(1) Zero is a natural number.

(2) Every natural number has an immediate successor that is also a natural number.

(3) Zero is not the immediate successor of any natural number.

(4) If two natural numbers have equal immediate successors, they are themselves equal.

(5) If a set of natural numbers A contains zero as well as the immediate successor of any natural number

in A, then every natural number is in A.

Assume that S is a formal language powerful enough to represent Peano arithmetic. For the sake of simplicity,

we assume that S is a somewhat richer language than ZF in that it includes symbols for the unary immediate

successor operation and the binary operations of addition and multiplication. There are many different ways

of assigning numbers to the components of the formal language S; we give only one example. We begin by

assigning numeric symbols to the symbols according to Table 1.

Table 1. Numeric Symbols

symbol numeric symbol meaning

¬ 1 not

∧ 3 and

∨ 5 or

=⇒ 7 implies

⇐⇒ 9 if and only if

∀ 11 for all

∃ 13 there exists

= 15 equals

( 17 left parenthesis

) 19 right parenthesis

0 21 zero

s 23 immediate successor

+ 25 plus

× 27 times



We also want a system of numeric symbols for variables, representing either numbers or well-formed formulas.

For this, we use powers of primes greater than or equal to 29. The numeric symbol of a numerical variable

is a prime, while the numeric symbol of a variable representing a well-formed formula with k free variables

is a prime raised to the power k + 2.

Table 2. Numeric Symbols for Variables

symbol number meaning

x 29 numerical variable

y 31 numerical variable
...

...
...

p 292 propositional variable

q 312 propositional variable
...

...
...

φ 293 predicate variable

ψ 313 predicate variable
...

...
...

If p is a string of n symbols, with corresponding numeric symbols m1,m2, . . . ,mn, then we define the Gödel

number of p to be

GN(p) = πm1
1 · πm2

2 · · · · · πmn
n ,

where π1, π2, . . . , πn are the first n primes.

Example 1. The Gödel number of the symbol s is GN(s) = 223. (Don’t confuse numeric symbols and

Gödel numbers!)

Example 2. The Gödel number of the number 2, which in S is represented by ss0, is

GN(ss0) = 223 · 323 · 521 = 376572715308000000000000000000000.

Example 3. Let p be the string in the formal language S defined by

p := ∀y ∃x (x = sy).

This string is a well-formed formula with no free variables, i.e. a statement/proposition in S. It expresses

Peano’s second axiom, that every number has an immediate successor. The numeric symbols of the individual

symbols in this string are 11, 31, 13, 29, 17, 29, 15, 23, 31, 19. Hence the Gödel number of p is

GN(p) = 211 · 331 · 513 · 729 · 1117 · 1329 · 1715 · 1923 · 2331 · 2919.

Exercise 1. Find the Gödel number of the string q := ∀x
(
¬(0 = sx)

)
. (Note that q is Peano’s third axiom.)

You may leave GN(q) in factored form!

Exercise 2. Express Peano’s fourth axiom as a statement r in S and find GN(r) (in factored form).

Exercise 3. Let T [x] be the arithmetical predicate, “x is an odd number.” Express this predicate in the

formal language S as a formula with one free variable, and determine its Gödel number (in factored form).
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A theorem in the formal language S is a statement that can be proved from the axioms using the logical rules

of inference, which are displayed in Table 2. A proof of a statement p is a sequence of statements, the last

of which is p. For example, we can use universal instantiation to give a proof of the statement 0 6= 1:

q :=∀x(¬(0 = sx));

z :=¬(0 = s0).

Table 3. Rules of Inference

Name Rule of Inference

modus ponens

p =⇒ q

p

∴ q

modus tollens

p =⇒ q

¬q
∴ ¬p

addition
p

∴ p ∨ q

simplification
p ∧ q
∴ p

conjunction

p

q

∴ p ∧ q

hypothetical syllogism

p =⇒ q

q =⇒ r

∴ p =⇒ r

disjunctive syllogism

p ∨ q
¬p
∴ q

universal instantiation
∀x
(
φ(x)

)
∴ φ(a) for any a in the universe of discourse

existential generalization
φ(a) for some a in the universe of discourse

∴ ∃x
(
φ(x)

)
We can extend Gödel numbering to sequences of strings. If p1, p2, . . . pn are strings in S with Gödel numbers

GN(p1), GN(p2), . . . , GN(pn), then the Gödel number of the sequence σ = (p1, p2, . . . pn) is

GN(σ) = π
GN(p1)
1 · πGN(p2)

2 · · · · · πGN(pn)
n ,

where π1, π2, . . . , πn are the first n primes. For example, the Gödel number of the proof above that 0 6= 1

is

GN(p, z) = 2GN(q) · 3GN(z).
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We can now assign a Gödel number to any symbol, string or sequence of strings in the formal system S.

Conversely, can we determine if a given number is the Gödel number of some symbol, string or sequence of

strings?

Exercise 4. Show that all Gödel numbers are even, but the converse is false.

Exercise 5. The number 1.4348907× 107 is a Gödel number; of what?

2. Translating Meta-Mathematics into Arithmetic

The point of Gödel numbering is that by representing symbols, strings and sequences of strings in S with

numbers, we can translate meta-mathematical sentences into purely arithmetical ones.

Exercise 6. Show that a string p begins with “¬” if and only if GN(p) is divisible by 2, but not by 4.

This exercise illustrates how a meta-mathematical sentence - a sentence about the formal system S - translates

into an arithmetical sentence via Gödel numbering. In this case, the meta-mathematical sentence is a

syntactical predicate, namely,

φ(p) := p begins with “¬”.

The corresponding arithmetical sentence is the arithmetical predicate

T [x] := x is divisible by 2, but not by 4.

Exercise 7. Express T [x] in the formal language S.

The biconditional statement in Exercise 6 could be expressed as:

φ(p) if and only if T [GN(p)].

Gödel showed that virtually all meta-mathematical sentences - namely the ‘primitive recursive’ ones - can

be translated into arithmetical sentences via Gödel numbering. (A precise definition of ‘primitive recursive’

is beyond the scope of this worksheet.) For example, the meta-mathematical predicate “p is a well-formed

formula,” describing a syntactic property of a string in S, is a primitive recursive sentence, and so can

be translated into a purely arithmetical predicate Wff [GN(p)], describing an arithmetical property of the

Gödel number of that string in N. This arithmetic predicate will be very complicated, and we may well ask

if we will be able to determine for any given (huge) number n whether it has this very complicated property.

Our assumption that S is powerful enough to represent arithmetic means that we will certainly be able to

express an arithmetical statement such as Wff [n] in the language S. Importantly, Gödel showed that for

any primitive recursive predicate, we will also be able to prove within S whether a specific number n does

or does not satisfy the predicate.
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Recall that the proof of a statement p in S in a sequence of statements, σ, the last of which is p. We can

formulate this as a meta-mathematical binary relation:

ψ(p, σ) := statement p is proved by sequence σ.

Gödel showed that this binary relation is primitive recursive. Hence, the meta-mathematical relation ψ

between the statement p and the sequence of strings σ can be represented by a purely arithmetical relation

Prf between the Gödel numbers GN(p) and GN(σ):

(1) ψ(p, σ) if and only if Prf
[
GN(p), GN(σ)

]
.

Moreover, we will be able to prove within S whether or not any two specific numbers satisfy this arithmetical

relation. From this arithmetical relation, we define the arithmetical predicate

Pr[x] := ∃y
(
Prf [x, y]

)
.

In other words, for a given statement p in S,

(2) p is provable in S if and only if Pr[GN(p)].

The meta-mathematical property that a given statement is provable in S (i.e. is a theorem in S) can be

translated into a purely arithmetical property of its Gödel number!

Moreover, since this property is primitive recursive, we have the following result.

Lemma 1. For any statement p in S, p is provable in S if and only if Pr[GN(p)] is provable in S.

3. Diagonalization

Definition. Let R = R[x] be an arithmetical predicate with Gödel number n. The diagonalization of R is

the statement obtained by substituting the number n in for the free variable x in R:

R[n] = R
[
GN

(
R[x]

)]
.

As with any statement, we can ask whether or not the diagonalization R[n] is provable in S. In fact, we are

more interested in when the diagonalization is not provable in S. Gödel showed that the meta-mathematical

predicate “R is a predicate whose diagonalization is not provable in S” is primitive recursive. Thus, it can

be translated into a purely arithmetical predicate U .

(3) R is a predicate whose diagonalization is not provable in S if and only if U
[
GN

(
R[x]

)]
.

Put another way, the numbers that satisfy the arithmetical predicate U are precisely the Gödel numbers of

arithmetical predicates whose diagonalizations are not provable in S.

Since U is an arithmetical predicate, it also has a diagonalization, which is called G: that is,

G := U
[
GN

(
U [x]

)]
.
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Theorem 1. The biconditional statement “G ⇐⇒ ¬Pr[GN(G)]” is provable in S.

Proof. First assume that we assert the statement G. By definition, we are asserting U
[
GN

(
U [x]

)]
, which

in turns asserts that the number GN
(
U [x]

)
satisfies predicate U . By (3), this means that U is a predicate

whose diagonalization is not provable in S. Since G is the diagonalization of predicate U , this means that G

is not provable in S. By (2), this is asserting that the Gödel number of G does not satisfy the arithmetical

predicate Pr, which is precisely ¬Pr
[
GN(G)

]
.

Conversely, assume that we assert ¬Pr
[
GN(G)

]
. This is asserting that the number GN(G) does not have

the arithmetical property of being the Gödel number of a statement that is provable in S. Since G is

certainly a statement, this must mean that G is a statement that is not provable in S. By definition, G

is the diagonalization of predicate U . Thus we are asserting that U is an arithmetical predicate whose

diagonalization is not provable in S. By (3), the Gödel number of U [x] must satisfy predicate U , which is

precisely the assertion U
[
GN

(
U [x]

)]
, which is G. �

Note that this theorem is neutral on whether G is a ‘true’ statement; it’s about provability, not truth. It

merely asserts that if by starting with the axioms and using only the rules of logical inference we can get to

statement G in S, then we can also get to statement ¬Pr[GN(G)]. Similarly, if by starting with the axioms

and using only the rules of logical inference, we can get to ¬Pr[GN(G)], then we can also get to G.

4. Consistency and Completeness

Definition. Let S be a formal system. Then S is

(1) consistent if and only if there is no statement p in S such that both p and ¬p are provable in S;

(2) complete if and only if for every statement p in S, either p or ¬p is provable in S.

We can express the definition of consistency in the formal language S with the statement

¬∃p
(
Pr[GN(p)] ∧ Pr[GN(¬p)]

)
,

or with the logically equivalent statement

∀p
(
¬Pr[GN(p)] ∨ ¬Pr[GN(¬p)]

)
.

(Note here that we are quantifying over statements, i.e. well-formed formulas with no free variables.)

Exercise 8. Express the definition of completeness in the formal language S.

Now, if S is both consistent and complete, then for every statement p in S, exactly one of p or ¬p is provable

in S. This is obviously the gold standard for formal systems! Gödel showed that no formal system S that is

powerful enough to represent Peano arithmetic can meet this gold standard.
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GÖDEL’S FIRST INCOMPLETENESS THEOREM

If S is consistent, then S is incomplete.

Proof. We will show that if S is consistent, then neither G nor ¬G is provable in S.

Claim 1. If S is consistent, then G is not provable in S.

Proof of Claim 1. We use proof by contrapositive (that is, modus tollens). Assume

G is provable in S.

By Theorem 1, G⇐⇒ ¬Pr[GN(G)] is provable in S, so by the inference rule of simplification,

G =⇒ ¬Pr[GN(G)] is provable in S.

By modus ponens,

¬Pr[GN(G)] is provable in S.

However, we assumed G is provable in S and so by Lemma 1,

Pr[GN(G)] is provable in S.

Since ¬Pr[GN(G)] and Pr[GN(G)] are both provable in S, by definition S is inconsistent.

Claim 2. If S is consistent, then ¬G is not provable in S.

Proof of Claim 2. Assume that

¬G is provable in S.

By Theorem 1, G⇐⇒ ¬Pr[GN(G)] is provable in S, so by simplification again,

¬Pr[GN(G)] =⇒ G is provable in S.

By modus tollens,

Pr[GN(G)] is provable in S.

By Lemma 1, G is provable in S. Since both ¬G and G are provable in S, by definition S is inconsistent. �

Gödel’s Second Incompleteness Theorem states that a consistent formal system powerful enough to express

Peano arithmetic cannot prove its own consistency. This does not mean that such a system is inconsistent,

or that its consistency can never be proved; it only means that to prove the consistency of such a formal

system, we need another (stronger) formal system.

To talk about a formal system S proving its own consistency, we must first formulate a statement in S that

expresses the proposition that S is consistent. For this, we need to take a detour.
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In classical logic, a contradiction is defined to be a compound statement (i.e. a statement made up of other

constituent statements, combined using logical connectives) such that the final column in its truth table

consists entirely of F ’s. In other words, the truth value of a contradiction is always ‘false’, no matter what

the truth values of the constituent statements are. Clearly, for any statement p, the compound statement

p ∧ ¬p fits this definition of a contradiction. Now, if statement r is a contradiction, then for any statement

q, the truth table for implication shows that r =⇒ q is always true. Hence, if we can prove r, then we can

prove any q.

The formalists, however, wanted to replace notions of truth and falsity with provability and non-provability.

To replace the classical notion of contradiction, we introduce into our formal system a new symbol, which

we will denote by ⊥ (sometimes called the absurdity constant), which has the status of a formula with no

free variables (i.e. a statement). We also introduce two new rules of inference associated with ⊥:

p ∧ ¬p
∴ ⊥

⊥
∴ ∀q(q)

Exercise 9. Using the rules of inference for ⊥ and in Table 2, prove that if a formal system S is inconsistent,

then every statement q in S is provable in S. (This is sometimes called the Principle of Explosion.) 1

The Principle of Explosion implies that if S is inconsistent, then for any statement p, both p and ¬p are

provable in S. Conversely, if every statement p in S has the property that both p and ¬p are provable in

S, then in particular there exists a statement p in S such that both p and ¬p are provable in S (because

universal quantification is stronger than existential quantification). Hence we have proved both directions

of the biconditional:

S is inconsistent ⇐⇒ ∀p
(
Pr[GN(p)] ∧ Pr[GN(¬p)]

)
.

Taking the contrapositive yields:

S is consistent ⇐⇒ ∃p
(
¬Pr[GN(p)] ∨ ¬Pr[GN(¬p)]

)
.

In the first section, we showed that z := ¬(0 = s0) (which is the expression in S of the arithmetical statement

0 6= 1) is provable in S. If S is consistent, then by definition ¬z := 0 = s0 is not provable in S. Conversely,

if we can demonstrate that ¬z is not provable in S, then by the above, S is consistent. We let

Con := ¬Pr[GN(0 = s0)].

Then Con is a statement in S that expresses the meta-mathematical statement that S is consistent.

1It is possible to construct a formal system without the Principle of Explosion. Such systems are called paraconsistent, and

have been studied since the mid-twentieth century. The indirect method of proof by contradiction does not in general hold in

such systems. Some argue that paraconsistent systems are an extension to classical systems, the same way as non-Euclidean

geometry extends Euclidean geometry.
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GÖDEL’S SECOND INCOMPLETENESS THEOREM.

If S is consistent, then Con is not provable in S.

Proof. Again, we use proof by contrapositive. Assume

Con is provable in S.

The proof of Claim 1 in the proof of Gödel’s First Incompleteness Theorem can be formalized in S, so

Con =⇒ ¬Pr[GN(G)] is provable in S.

By modus ponens,

¬Pr[GN(G)] is provable in S.

By Theorem 1, G ⇐⇒ ¬Pr[GN(G)] ≡ (G =⇒ ¬Pr[GN(G)]) ∧ (G⇐= ¬Pr[GN(G)]) is provable in S. By

simplification,

¬Pr[GN(G)] =⇒ G is provable in S.

By modus ponens again,

GG⇐⇒ ¬Pr[GN(G)]

By the contrapositive of Claim 1, S is inconsistent. �
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